Quasi Maximum Likelihood Estimation of Spatial Models with Heterogeneous Coefficients∗
نویسندگان
چکیده
This paper considers spatial autoregressive panel data models and extends their analysis to the case where the spatial coefficients differ across the spatial units. It derives conditions under which the spatial coefficients are identified and develops a quasi maximum likelihood (QML) estimation procedure. Under certain regularity conditions, it is shown that the QML estimators of individual spatial coefficients are consistent and asymptotically normally distributed when both the time and cross section dimensions of the panel are large. It derives the asymptotic covariance matrix of the QML estimators allowing for the possibility of non-Gaussian error processes. Small sample properties of the proposed estimators are investigated by Monte Carlo simulations for Gaussian and non-Gaussian errors, and with spatial weight matrices of differing degree of sparseness. The simulation results are in line with the paper’s key theoretical findings and show that the QML estimators have satisfactory small sample properties for panels with moderate time dimensions and irrespective of the number of cross section units in the panel, under certain sparsity conditions on the spatial weight matrix.
منابع مشابه
A comparison of algorithms for maximum likelihood estimation of Spatial GLM models
In spatial generalized linear mixed models, spatial correlation is assumed by adding normal latent variables to the model. In these models because of the non-Gaussian spatial response and the presence of latent variables the likelihood function cannot usually be given in a closed form, thus the maximum likelihood approach is very challenging. The main purpose of this paper is to introduce two n...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملEstimation of Variance Components for Body Weight of Moghani Sheep Using B-Spline Random Regression Models
The aim of the present study was the estimation of (co) variance components and genetic parameters for body weight of Moghani sheep, using random regression models based on B-Splines functions. The data set included 9165 body weight records from 60 to 360 days of age from 2811 Moghani sheep, collected between 1994 to 2013 from Jafar-Abad Animal Research and Breeding Institute, Ardabil province,...
متن کاملBayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data
This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...
متن کاملAsymptotic Theory of Cepstral Random Fields by Tucker
Random fields play a central role in the analysis of spatially correlated data and, as a result, have a significant impact on a broad array of scientific applications. This paper studies the cepstral random field model, providing recursive formulas that connect the spatial cepstral coefficients to an equivalent moving-average random field, which facilitates easy computation of the autocovarianc...
متن کامل